高考数学答题技巧
高考数学答题技巧1
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1、解题路线图
(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的`工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2、构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
高考数学答题技巧2
选择题的特点:
1、选择题分数所占比例高,约占750分的40%以上,即315~330分。
2、选择题可猜答,有一定几率不会做也能得分。
3、选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。
4、选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。
5、掌握选择题大题技巧可做到所有科目选择题既能快速解答,有能获取满分。
搏众应许多同学们的要求,今天给大家带来管卫东的选择题考试技术,说一下如何以技术手段在现有阶段,帮助学生在原有知识水平上,决胜高考。
这里提到三个概念点,思维、标准化试题(选择题)、大题难题。
我们先用标准化试题考试技术引出思维层面,再结合大题难题,做一个系统的综述。
一、国家《高考标准化考试须知》中给出的一些猜答技巧
猜答技巧
选择题存在凭猜答得分的可能性,我们称为机遇分。这种机遇对每个考生是均等的,只要正确把握这种机遇,就不会造成考试的不公平。
选择题虽不易猜答但仍有它的答题基本方法,现简单介绍如下:
消元法 选择题答案是唯一正确的,运用消元法是最普通的。先将自己认为不是正确的选项消除掉,余下的则为待选项,可缩小选择范围。该法也适用多选题排除错误选项。
分析法 将四个选择项全部置于试题中,纵横比较,逐个分析,去误求正,去伪存真,获得理想的答案。
联想法 有时对四个选项元从下手,这时可以展开联想,联想课本、练习、阅读材料及其他,从而捕捉自己需要的知识点。语感法 心理学家认为,一定量的语言材料可以使人们产生对某种语言的融洽自然的感觉即所谓语感。在答题中因找不到充分的'根据确定正确选项时,可以将试题默读几遍,自己感觉读起来不别扭,语言流畅顺口,即可确定为答案。
类比法 在能力倾向选择题中类比法十分重要,四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。如有两个选项不能归类时,则根据优选法选出其中一个选项作为自己的选择项。
推测法 利用上下文推测词义。有些试题要从句子中的结构及语法知识推测入手,配合自己平时积累的常识来判断其义,推测出逻辑的条件和结论,以期将正确的选项准确地选出。
高考数学答题技巧3
1数形结合法:
“数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系、在方法上互相渗透、在一定条件下可以互相转化,而数形结合法正是在这一学科特点的基础上发展而来的。在解答选择题的过程中,可以先根据题意,做出草图,然后参照图形的做法、形状、位置、性质,综合图象的特征,得出结论。用这种方法,既方便解题又容易让人明白。
2直接对照法:
从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。
3筛选法:
去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的.结论.
数学可谓是高考中最易得分科目,只要你平时做好准备,相信在高考中会考到你满意的分数。最后冲刺的一个月,不妨参考过来的考试经验,答题技巧,找最适合的方法去迎战20xx年高考数学。
高考数学答题技巧4
1、仔细审题,吃透题意
审题是正确解题的前题条件,通过审题,可以掌握用于解题的第一手资料——已知条件,弄清题目要求。
审题的第一个关键在于:将有关概念、公式、定理等基础知识加以集中整理。凡在题中出现的概念、公式、性质等内容都是平时理解、记忆、运用的重点,也是我们在解选择题时首先需要回忆的对象。
审题的第二个关键在于:发现题材中的“机关”—— 题目中的一些隐含条件,往往是该题“价值”之所在,也是我们失分的“隐患”。
除此而外,审题的过程还是一个解题方法的抉择过程,开拓的解题思路能使我们心涌如潮,适宜的解题方法则帮助我们事半功倍。
2、反复析题,去伪存真
析题就是剖析题意。在认真审题的基础上,对全题进行反复的分析和解剖,从而为正确解题寻得路径。因此,析题的过程就是根据题意,联系知识,形成思路的过程。由于选择题具有相近、相关的特点,有时“真作假时假亦真”,对于一些似是而非的选项,我们可以结合题目,将选项逐一比较,用一些“虚拟式”的 “如果”,加以分析与验证,从而提高解题的正确率。
3、抓往关键,全面分析
在解题过程中,通过审题、析题后找到题目的关键所在是十分重要的,从关键处入手,找突破口,联系知识进行全面的分析形成正确的解题思路,就可以化难为易,化繁为简,从而解出正确的答案。
4、反复检查,认真核对
在审题、析题的过程中,由于思考问题不全面,往往会导致“失根”、“增根”等错误,因而,反复地检查,认真地进行核对, 也是解选择题必不可少的步骤之一。
高考数学考试技巧
为了在考试中发挥出应有的水平,建议考生在高等数学的考试中注意以下几点:
(1)考生应在允许的时间范围内提前进入考场,熟悉考场环境,并做好必要的准备工作,静下心来,以充满信心且平和的心态迎接考试。
(2)拿到试卷后,不要急于提笔答题,用两三分钟时间将试卷快速浏览一遍,对试题的基本情况要做到心中有数,不一定按照题号的顺序依次解答,可视难易程度,分轻重缓急,合理地分配答题时间,按照三优先原则进行解答。
三优先原则是:容易得分的题优先做,有把握得分的题优先做,可以多得分的题优先做。
(3)答题之前要认真审题,仔细把考题读上两遍,弄懂题意,弄清已知条件及所求的结论,分析已知条件与所求结论之间有何种关系;并将问题归类,属于哪一部分的知识点,需要使用哪种运算工具来解题。对以上各点要有个基本判断,进而准确地使用有关概念,透彻地进行分析,迅速地寻求解题途径。
(4)答题过程中要情绪饱满,沉着冷静;要心静如水,思绪如潮;要排除各种干扰,集中精力解题。要注意“会做”与“做对”是两个完全不同的概念,要将“会做”转化为“做对”。凡是容易做的题,要每答必对。对于较难的题,要有足够的耐心,能答多少就答多少;或者先暂时放下,把简单的题做完后再回头做。总之,不能在考试中留下遗憾。
(5)考试结束前应留出20分钟左右的时间进行检查。答卷完毕后不要急于交卷,应把答卷认真仔细地浏览一遍,找出解题过程中的疏漏之处并改正,验算计算的`结果是否正确,改写答案要慎重,尽量减少不应当的失分。对于没有把握的题,也应尽可能地给出答案,尽量争取多得分。
简言之,要想取得好成绩,应试时应努力做到:
心态平和,审题仔细;弄清题意,分析透彻;
方法得当,思路简捷;层次清楚,推理严密;
计算准确,表述清楚;格式规范,卷而整洁。
成人高考高起点数学学习基本方法
一、集合与简易逻辑
1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;
2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;
3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;
4.判断命题的真假要以真值表为依据。原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断
学好数学的六大方法技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。
目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。
提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。
高考数学答题技巧5
一、填名写号粘条码。进入考场后,考生应按全省统一制定的《考试操作指令》要求完成答题前的准备工作:即考场分发题(卡)后应按考场提示先将姓名、考号准确填写在答题卡指定处,再将本人条形码粘贴到答题卡相应位置,然后检查核对本人的试题题数、页数和答题卡上的题数是否完整、对应。
二、通览试卷重审题。考生在稳定情绪并得到试卷后,检查试卷的同时应迅速浏览整份试卷,做到心中有数。对任何一道试题都须仔细审题,即先看清题意,看准提问,然后作答;对综合题、作文题等则要先审题构思再动手答题,并看清答题区域大小,以免因理解有误答错试题回头修改,或因答题区域不够用,浪费时间,影响心态。另外,外语科目听力部分考试结束后,考生方可进行其他部分的答题。
三、按序作答先易后难。开考后,考生应按试题顺序作答,即选择、填空、简答、综合应用等,先做容易的、有把握得分的试题,增强信心。遇到难题不紧张、不纠缠,解答不出先绕过,确保会做的题不失误能得分。还要留意题量、题型,各题占分比例不一样,分值少的题应尽量少用时。将疑难试题留到最后分析解决,即使答不出也不会过分懊悔自责。
四、答题之后速涂卡。一般来说,客观性试题先在草纸或试题上快速答题,经过检查无误后,再用2B铅笔在答题卡上填涂最终答案,这样比做一题涂一题相对更快速准确。但并非所有考生都要刻意如此,只要能在规定的`时间内完成答题,选择哪种方式并不重要。切记:涂卡时要涂点准确,不能漏涂,更不能串格;涂后如需更正涂点,要用橡皮将原涂点擦净,不致影响得分。
五、卷面整洁字清晰。考生在回答主观性试题时,首先要看清题号和答题区域,不要只顾答题速度,不计书写质量,切忌乱涂乱改。要做到字迹清晰,保持卷面整洁,并且,叙述要有条理,以使评卷教师能够看得清、辨得准,避免因字迹辨认不清引起不必要的失分。
六、心态平和抗干扰。考生进入考场后,可先简单地熟悉一下环境,但不要过多地东张西望,应平心静气地专心应考,心气平静思维才能敏捷。考试期间,无论阴天下雨,还是刮风打雷,甚至是考场内其他考生发生意外情况,都不应分心听看,分散注意力。每科考试结束前15分钟监考人员都会宣布剩余时间,此时如尚有试题未答,更应按先易后难顺序力争在限时内答题完毕。
七、考完科目别懊悔。高考是选拔性考试,其试题具有一定的区分度,在考场上有答不出的题目,或有的题目答题失误实属正常,人人如此,考生大可不必过分懊悔自责。考过一科就应该忘记一科,积极准备下一科考试,切勿出门即对答案,更不要情绪低落,以致影响下一科的正常发挥。
八、考试时间要严守。按照规定,每科考试交卷时间不得早于考试结束前30分钟。如果考生在规定的出场时间内答完试题,应认真检查、修正答案,既不要违反规定提前退出考场,更不得在考场内影响其他考生答题,若违反考场纪律,将被按有关规定取消单科或所有各科的考试成绩。
九、区域外切勿答题。答题卡中每道题都限定了答题区域,如在限定区域外答题,包括将答案写在试题上、草纸上,答案都无效。更不得将姓名、考号写在答题卡非指定位置,或以其他方式在答题卡留有特殊标记。
高考数学答题技巧6
1、平行、垂直位置关系的论证的策略
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2、空间角的计算方法与技巧
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3、空间距离的计算方法与技巧
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体 积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距 离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4、熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5、平面图形的翻折、立体图形的展开等一类问题
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
6、与球有关的`题型
只能应用“老方法”,求出球的半径即可。
7、立体几何读题
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
8、解题程序划分为四个过程
①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。
④回顾。对所得的结论进行验证,对解题方法进行总结。
高考数学答题技巧7
记者在采访中发现,两次模拟考试过后,很多学生产生了心理落差。现代教育连老师告诉记者,据她统计,大约有30%的学生在前两次模拟考试中没有发挥出应有水平。尤其是一模考试,学生在心理上和知识准备上都没完全调整到临考状态,加上考试难度较大,导致发挥失常。连老师提醒学生,找准自己的定位,拿到最有把握的分数是在剩下的20天里考生应该关注的重点。对于数学这一科目来说,精准的.自我分析尤其重要。连老师认为,对于130分以上的尖子生来说,每一道题都要认真对待。他们本身知识扎实,答题并不依赖于技巧。而其他学生,则需要掌握一定的技巧。数学试卷共22道题,其中最后一道三选一的题,考生根据自己的强项进行选择,拿到满分是比较容易的,任何学生都不应该放弃。另外,对于分数在70分~90分的学生来说,8道选择题是必须拿到的分数。建议学生每天练习,达到类似英语语感的答题感觉。17~19题,尽量多得分。而20、21两道题,重点关注第一问就可以了。
科苑学校严老师提醒艺术类考生,把答题重点放在填空选择题上。大题第一问,套用一些记牢的公式就可以了。另外对于美术特长生来说,立体感好是他们的优势。所以可以主攻立体几何,这部分题目尽量多拿分。
题型不同技巧也有差异
据连老师介绍,今年高考数学科目的考察内容可能会有所变化。其中以下三类内容可能增加:第一是幂函数,重点考察图像;第二是超几何分布,概率问题可能出现在答题的第2问和第3问中;第三是独立型检验,例如统计。考生在备考中,要做好心理准备和知识储备,以免拿到试卷看到新题产生慌乱。连老师说,就答题技巧来说,选择题技巧相对多一些。如果是一道不会做的选择题,那么可以用特殊值法、排除法、联想法等得出答案。
严老师认为,在做选择题的时候,如果通过知识和技巧都得不出答案,实在没办法的情况下,可以考虑答案平均的情况。也就是在大型考试中,12道选择题,ABCD四个答案的数量经常都是三个。所以如果已经做出3道有把握的题答案是C,那么再蒙不会做的那道题时,就可以不考虑C了。严老师说,大题部分,概率题和圆锥曲线题也是有技巧的。概率题,考生如果分析推导不出结果,可以把所有可能性都列出来,也能得到2~3分。圆锥曲线题第一问经常为求曲线方程,考生把熟练记忆的相应公式写上,并予以套用,也能得到4分左右。
严老师提醒考生家长,在剩下的20天里,不要把孩子逼得太紧,尤其不要限定每天必须学到几点,也不要跟其他孩子比较。现在考生的弦已经绷得很紧了,家长应该起到疏导的作用,压力太大则容易适得其反。
高考数学答题技巧8
a、三角函数与向量解题技巧
平移问题:永远记住左右平移只是对x做变化,上下平移就是对y考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉做变化,永远切记。
b、概率解题技巧
它主要是考我们向量的数量积以及三角函数的化简问题看,同时可能会涉及到正余弦考点:对文科生来说,这个类型的题主要是考我们对题目意思的定理,难度一般不大。理解,在解题过程能学
只要你能熟练掌握公式,这类题都不是问题。会树状图和列表,题目也是相当的简单,只要你能审题准确,这类题型:这部分大题一般都是涉及以下的题型:题都是送分题;对理
最值(值域)、单调性、周期性、对称性、未知数的取值范围、平移科生来说,主要注意结合排列组合、独立重复试验知识点,同时会问题等要求我们准确掌握分
解题思路:布列、期望、方差的公式,难度也是不大,都属于送分题,是要求第一步就是根根据向量公式将表示出来:其表示共有两种方法,一我们必须拿全部分数。
种是模长公式(该种方法是在题目没有告诉坐标的情况下应用),即,题型:在这里我就不多说了,都是求概率,没有什么新颖的地方,另一种就是用坐标公式表示出来(该种方法是在题目告诉了坐标),不过要注意我们曾经
即在这里遇到过的线性规划问题,还有就是篮球成功率与命中率和防第二步就是三角函数的化简:化简的方法都是涉及到三角函数的诱守率之间关系的类似
导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),题目。
解题思路:
第一步就是求出总体的情况
第二步就是求出符合题意的情况
第三步就是将两者比起来就是题目要求的概率
这类型题目对理科生来说一定要掌握好期望与方差的公式,同时最重要的是独立重复试验概率的求法。
c、几何解题技巧
考点:这类题主要是考察咱们对空间物体的感觉,希望大家在平时学习过程中,多培养一些立体的、空间的感觉,将自己设身处地于那么一个立体的空间中去,这类题对文科生来说,难度都比较简单,但是对理科生来说,可能会比较复杂一些,特别是在二面角的求法上,对理科生来说是一个巨大的挑战,它需要理科生能对两个面夹角培养出感情来,这样辅助线的做法以及边长的求法就变得如此之简单了。
题型:这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)解题思路:
证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。
证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。
证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。
其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。
证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。
体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的`专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。
二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点A出发引向另一个面的垂线,垂足为B,然后过垂足B向这两个面的交线做垂线,垂足为C,最后将A点与C点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)
二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。
这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。
d、圆锥曲线解题技巧
考点:这类题型,其实难度真的不是很大,我个人理解主要是考大家的计算能力怎么样,还有就是对题目的理解能力,同时也希望大家都能明白圆锥曲线中a,b,c,e的含义以及他们之间的关系,还有就是椭圆、双曲线、抛物线的两种定义,如果你现在还不知道,趁早去记一下,不然考试的时候都不知道的哈,我真的无语了。题型:这种类型的题一般都是以下几种出法:第一个问一般情况就是求圆锥曲线方程或者就是求某一个点的轨迹方程,第二个问一般都是涉及到直线的问题,要么就是求范围,要么就是求定值,要么就是求直线方程解题思路:
求圆锥曲线方程:一般情况下题目有两种求法,一种就是直接根据题目条件来求解(如题目告诉你曲线的离心率和过某一个点坐标),另一种就是隐含的告诉我们椭圆的定义,然后让我们去琢磨其中的意思,去写出曲线的方程,这种问法就比较难点,其实也主要是看我们的基本功底怎么样,对基础扎实的同学来说,这种问法也不是问题的。求轨迹方程:这种问题需要我们首先对要求点的坐标设出来A(x,y),然后用A点表示出题目中某一已知点B的坐标,然后用表示出来的点坐标代入点B的轨迹方程中,这样就可以求出A点的轨迹方程了,一般求出来都是圆锥曲线方程,如果不是,你就可能错了。直线与圆锥曲线问题:三个步骤你还知道吗(一设、二代,三韦达)。
先做完这个三个步骤,然后看题目给了我们什么条件,然后对条件进行化简(一般的条件都是跟向量呀,斜率呀什么的联系起来,希望大家注意点),在化简的过程中我们需要代韦达进去运算,如果我们在运算的过程中遇到了,一定要记得应用直线方程将表示出来,然后根据韦达化简到最后结果。最后看题目问我们什么,如果问定值,你还知道怎么做么,不知道的就现在来问我,如果问我们范围,你还知道有一个东西么(),如果问直线方程,你求出来的直线斜率有两个,还知道怎么做么,如果要想舍去其中一个,你还记得一个东西么()。同时如果你是一个追求完美的人,我希望你在做题的时候考虑到直线斜率存在与否的问题,如果你觉得你心胸开阔,那点分数我不要了,我考虑斜率存不存在的问题,那么我就说你牛!!
个人理解的话,圆锥曲线都不是很难的,就是计算量比较复杂了一点,但是只要我们用心、专心点,都是可以做出来的,不信你慢慢的去尝试看看!
e、函数导数解题技巧
考点:这种类型的题主要是考大家对导数公式的应用,导数的含义,明确导数可以用来干什么,如果你都不知道导数可以用来干什么,
你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。题型:最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)解题思路:
最值、单调性(极值):首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式):其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。未知数的取值范围(交点或者零点):这种要是没有掌握方法的人,觉得:哇,怎么就那么难呀,其实不然,很简单的,只是各位你要明确这种题的解题思路哈。首先还是需要我们把要求的未知数放在一边,把知道的数放在一边去,这样去求出已知数的最值,然后简单的画一个图形我们就可以分析出未知数的取值范围了,说起来也挺简单的,如果有什么不了解的,可以马上问我,不要留下遗憾。
f、数列解题技巧
考点:对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。
题型:一般分为证明和计算(包括通项公式、求和、比较大小),解题思路:
证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。
求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!!,三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的不一定那么容易的,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。
比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。
补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。
高考数学答题经验
1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4、选择与填空中出现不等式的题目,优选特殊值法;
5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
高考数学答题方法
数学大题的题型与技巧如下:
一、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法,如何把当前的式子转化到目标式子,一般进行适当的放缩;
3、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。
二、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
三、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、注意计数时利用列举、树图等基本方法;
5、注意放回抽样,不放回抽样;
6、注意零散的知识点(茎叶图、频率分布直方图、分层抽样等)在大题中的渗透。
四、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法,知道弦中点时,往往用点差法,注意自变量的取值范围。
高考数学答题技巧9
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的'。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学选择题特点:
1.选择题分数所占比例高,约占750分的40%以上,即315~330分。
2.选择题可猜答,有一定几率不会做也能得分。
3.选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。
4.选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。
5.掌握选择题答题技巧可做到所有科目选择题既能快速解答,又能获取满分。
高考数学答题技巧10
一、专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合
1.导数概念的理解。
2.利用导数判别可导函数的`极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考数学答题技巧11
学习是一门学问,讲究技巧,同样我们的考场应试也讲究技巧,今天就给大家讲述一下高考数学解题技巧四项原则,目的很简单,就是为了大家不丢分。
第一个技巧,看清审题与解题
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a>0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。
第二个技巧,利用好快与准
只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
第三种解题技巧:“会做”与“得分”的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。这样的失分情况,的确很冤枉,所以高中学习网不希望我们的同学也犯这样的错误!
第四种解题技巧:难题与容易题的关系
一般来说,当我们拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。但是,近年来考题的'顺序并不完全是难易的顺序,因此在答题时要合理安排时间!此外,高中学习方法指导名师建议我们的同学,在解答题时都应设置了层次分明的“台阶”,因为看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
最后,还是建议同学们,先做容易题,再做难题,别在难题上面花太多的时间!对于数学的解题技巧,基本就是这样,其中还有一些细节,就需要同学们注意了!
高考数学答题技巧12
首先同学们要正确认识压轴题。
压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
第二重要心态:千万不要分心
其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
第三重要心态:重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,
步骤(1)将题目条件推导出“新条件”,
步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的.“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
最高境界就是任何一道题目,在你心中没有难易之分,心中只有根据题目条件推出新条件,一直推到最终的结论。解题心态也应当是宠辱不惊,不以题目易而喜,不以题目难而悲,平常心解题。
最后还有一点要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学压轴题的答题技巧就为大家介绍到这里,希望对你有所帮助。
高考数学答题技巧13
1.剔除法:
利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:
对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破解法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的'方法。
5.逆推验证法(代答案入题干验证法):
将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:
从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:
由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:
对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,高中的政治,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学答题技巧14
洛阳一高教务处副主任、数学老师黄艳波介绍选择题和填空题的答题技巧。
选择题“不择手段”
黄艳波介绍,根据《考试大纲》,高考选择题的题型特点通常为:一是概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异;二是量化突出,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,但并非简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查;三是充满思辨性,或多或少要求考生具备一定的观察、分析和逻辑推断能力;四是形数兼备,在高考的数学选择题中,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题,因此,考生必须通过数形结合与形数分离的解题方法来解答题目;五是解法多样化,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,为试题的解答提供了丰富的有用信息,有相当大的提示性,增加了解答的途径和方法。
针对这些特点,黄艳波提供给考生的解题思路是:一要注意审题,把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题;二是答题顺序不一定按题号进行,可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态;三是数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目;四是挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等;五是方法多样,“不择手段”,高考试题凸现能力,要注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答,不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心;六是要控制时间,一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
填空题要“直扑结果”
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。其次,填空题的架构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此黄艳波特意提醒考生再多注意其中的'一些不同的特征,一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,答案稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
高考数学答题技巧15
“高分靠实力,满分靠运气”。首先您得有这个心态,才能继续往下看。
先说说训练。主要分两步走,如果实力可以做到除了后三道大题其余均会做,那么老师发的每一套卷子就先不做后三题,这样可以节约出大量的时间(因为后三道的任何一道都够做一套选择题了)训练准确度。大约两周的时间吧,把这一关过了,最后三道题能剩将近一小时吧,而且做5套卷子能错1道题左右。即使能做出的题目,或是难题中比较简单的前几小问也要比较认真地过一下答案,因为很多时候虽然能做出来但是可能方法不是最直接的,表述也不是最严密的,模仿标准答案的思路对于解决答题标准性问题帮助很大。
然后开始攻克后三题。先找来了近三年各个省的后2-3题,把他们按六大专题归了类(就是三角函数,立体几何,概率统计,数列,导数,解析几何),每周一个专题,先做一半的题,总结一次方法,再做另一半的题目。这样又花了一个半月的时间搞定了。
压轴题的难度一般较大,因此计算能力的练习是必要的。这里的计算能力不仅仅指数字计算,还有化简带有一堆符号的'等式不等式。扎实的基本功是前提。
压轴题的思路往往比前边的题多拐一些弯,所以在做压轴题的时候,思维就要调整为压轴题模式,不要怕思维绕和计算量大,只要认为方法正确就做。
每一个专题的压轴题都可以分为几个类型,而每个类型会有一点共性,做的时候多总结会大有裨益。
当然,压轴题即使你认真做了,也不一定能做出来,因此必须学会放弃(这条是高考考场上要注意的)。
【高考数学答题技巧】相关文章:
高考数学答题技巧03-09
高考数学答题的技巧12-08
高考数学答题技巧及答题思路12-09
高考数学函数答题技巧12-08
高考数学几何答题技巧12-08
高考数学高分答题技巧12-08
高考数学答题技巧大全12-08
高考数学的答题技巧方法12-08
高考数学答题技巧介绍12-08
高考数学答题冷技巧12-09