- 相关推荐
《大数据时代》读后感范文
知道"是什么"就够了,没必要知道"为什么"。在大数据时代,我们不必非得知道现象背后的原因,而是让数据自己"发声"。这个命题是我读这本书最大的感触。
对于大多数人来说,这的确是一场思维变革。对于理科学生来说,会认为这是一个错误的观点,因为这无异于否定了他们对世界客观物理化学规律探索的重要性;对于一名工科学生,其实这并不是一个多么新颖的观点,因为工科是讲求时用性的,如何能更好地利用基本自然科学规律创造社会财富比探索自然科学知识显得更重要。
这些天来,在读大数据这本书的同时,也稍微重温了一下自动控制原理,认识到控制系统中存在明显的大数据时代思维方式,借读书交流会之际,与大家分享。
对系统的有效控制需要对系统理解与建模。以一个日常生活中的例子说明。开车的时候一脚油门下去车就飞出去了,但并不知道这一脚油门下去能给多大车速,这就需要驾驶人员的熟练的驾驶技能了,不然超速被开罚单是很正常的。那么,问题就来了:如何能实现速度的自动控制而不用驾驶人员踩油门?这就是控制系统最关键的环节——建立系统数学模型。大白话就是知道车速与燃油量的数学关系式。若是以探索为什么的思维模式,不可避免的要列一大堆能量方程、动量方程等物理化学式子,经过繁杂的计算,还是能得到车速和燃油量的数学关系式的。很明显这是一个繁琐的过程,因为得知道现象背后的原因。这仅是对于这种简单的系统,若是对于航空发动机这种复杂的系统,结构工艺过于复杂,分析各部分的物理化学过程是十分困难的,这时候可以通过实验法得到数学模型。
实验法主要有时域测定法、频域测定法和统计相关法。与大数据时代思维最接近的是统计相关法,主要过程是对被研究对象施加某种随机信号,根据被测对象各参数的变化,采用统计相关法确定被测系统或对象的动态特性。这种方法可以在被测系统或生产过程正常运行状态下进行在线辨识,测试结果精度较高,但要求采集大量测试数据,并需要相关仪和计算机进行数据计算和处理。
若用开车实例来解释,此时的系统为汽车动力系统,施加的随机信号为燃油量,被测对象指车转速,得到的动态特性就是指车速与燃油量函数关系式,从而不用探求背后的物理化学规律就得到了数学模型。
在沈阳黎明航空公司实习时去过试车间,除了发动机点火后震撼的场景动人心魄,控制室屏幕上海量的数据也同样引人注目,我想这么多数据无非就是验证数学模型或直接实验法得到数学模型,结合航空发动机这种复杂的系统,对于搞控制的人来说,得到数学模型就够了,现象背后的原因交给研发的人来探索更好。
【《大数据时代》读后感】相关文章:
大数据时代读后感范文800字05-12
《大数据时代》读书心得体会(精选3篇)05-02
《决战大数据》读后感04-21
时代的苟且)07-02
战车时代05-12
共享时代05-08
时代的作文03-29
数据挖掘相关试题及答案04-02
数据分析面试的问题04-09