- 相关推荐
数据分析面试的问题
对于数据库分析人员来说,面试前做好面试准备很重要,你了解哪些面试问题呢?下面阳光网小编已经为你们整理了数据分析面试的问题,希望可以帮到你。
数据分析面试的问题(一)
一、异常值是指什么?请列举1种识别连续型变量异常值的方法?
异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。
Grubbs’ test(是以Frank E.Grubbs命名的),又叫maximumnormed residual test,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。
未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。
二、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。
聚类分析(clusteranalysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。聚类与分类的不同在于,聚类所要求划分的类是未知的`。
聚类分析计算方法主要有:层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:
(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。
优点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<<N,t<<N 。
缺点:1. K 是事先给定的,但非常难以选定;2. 初始聚类中心的选择对聚类结果有较大的影响。
三、根据要求写出SQL
表A结构如下:
Member_ID (用户的ID,字符型)
Log_time (用户访问页面时间,日期型(只有一天的数据))
URL (访问的页面地址,字符型)
要求:提取出每个用户访问的第一个URL(按时间最早),形成一个新表(新表名为B,表结构和表A一致)
create table B as select Member_ID,min(Log_time), URL from A group by Member_ID ;
数据分析面试的问题(二)
1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。
2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?
3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?
4、什么是:协同过滤、n-grams,mapreduce、余弦距离?
5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?
6、如何设计一个解决抄袭的方案?
7、如何检验一个个人支付账户都多个人使用?
8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?
9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?
10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?
11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?
12、你最喜欢的编程语言是什么?为什么?
13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。
14、SAS,R,Python,Perl语言的.区别是?
15、什么是大数据的诅咒?
16、你参与过数据库与数据模型的设计吗?
17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?
18、你喜欢TD数据库的什么特征?
19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?
20、如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?
21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?
22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?
23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?
24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?
25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?
26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?
27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)
28、什么是星型模型?什么是查询表?
29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?
30、在SQL,Perl,C++,Python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?
【数据分析面试的问题】相关文章:
小升初面试常规问题分析12-09
数据分析面试题及答案04-09
面试问题及答案以及分析04-09
面试官的典型问题分析12-09
决策和分析问题的能力的面试题目12-09
各种面试问题回答技巧及分析最新大全04-18
数据分析工作总结01-10
运营数据分析简历模板04-02
考研复习战术分析:数据结构12-09