实用的设计方案
为了确保事情或工作能无误进行,我们需要事先制定方案,方案是计划中内容最为复杂的一种。那么应当如何制定方案呢?以下是小编为大家收集的设计方案3篇,仅供参考,希望能够帮助到大家。
设计方案 篇1
个案工作、小组工作和社区工作是社会工作的三大直接服务方法,但是在农民工社会工作服务中它们并不是单一存在的,一个完整性的公益项目或者一个系列性专业服务大都融入了其中两种及以上的服务方法,甚至引入其他专业服务方法。因此,在农民工社会工作服务中更加注重和强调综融社会工作方法的应用。
一、社会工作服务农民工直接方法的使用情况
从具体实践来看,社会工作服务农民工注重不同直接服务方法的多方位介入,这也说明了问题和需求的复杂性需要不同方面的手法介入,以达至更好的服务成效。以上海复源社工事务所20xx~2012年“流动儿童社会适应项目”为例,根据该机构《流动儿童社会适应项目终期报告》显示,该项目社会工作直接服务方法在农民工社会工作服务项目中的应用情况如下:开展4个系列专业小组和42次一般小组活动,基本活动内容为自我成长、兴趣培养、潜能挖掘、团队协作等;开展社区工作活动28次,基本活动内容以社区融入和节日主题性活动为主;开展25项个案工作与辅导,基本活动内容以亲子关系和环境适应调适为主。
这些数据能够显现出社会工作直接服务方法介入农民工服务的基本特点,即以个案工作、小组工作和社区工作三大方法综合运用为主,辅以其他服务方法,同时在三大直接服务方法中以小组工作和社区工作为主要方法。
二、综融:社会工作介入农民工服务的重要选择
农民工社会工作服务活动设计和实践中经常综合性应用了个案工作、小组工作和社区工作以及其他专业手法,这就是综融社会工作方法。它是对不同社会工作直接服务方法的`有机融合,既有针对农民工及其家庭个别化需求的个案工作,也有内容丰富的小组活动,还有依托社区、学校等开展的社区活动。
以上海复源社工事务所“流动儿童社会适应项目”为例,在项目后期,社会工作者发现项目对象中的六年级学生面临着回老家就学与留在上海就学的两难选择等现实问题。针对这个实际需求,社会工作者将个案工作、小组工作、情绪疏导和家庭辅导等专业手法相结合,引导流动儿童、家庭正确面对自身的成长发展以及对未来学习生活的规划。
三、实践中探索创新:应注重基于需求和实践的服务方法创新
基于农民工社会问题的复杂性,农民工社会工作服务还应尝试性地整合其他专业方法,使用扩展性服务方法,比如文艺表达法、影像传播法等,从实践效果来看,这些方法比较适合农民工的群体特点和实际需求。同时,也应注重在社会工作服务农民工的具体过程中将专门性服务方法和综合性方法相结合,形成农民工社会工作服务体系。一方面专门专业的方法能够确保服务成效并推进我国社会工作发展,另一方面农民工问题是多面性问题,因此我们应在考虑问题和需求特殊性的基础上注重将引入国际经验和创新本土经验相结合。
比如协作者结合草根文艺创造的方法组织农民工创作了民众戏剧并巡回演出,积极倡导社会公众对农民工及其社会问题的关注。这些内含社会工作理念和手法的服务都具有实效性的,也是一种方法创新。
设计方案 篇2
一、工程概况
济宁市城后路金都楼基坑支护工程位于莞城内,拟建六层建筑物,一层地下室,用地面积3177.76平方,现状场地较平整。基坑开挖深度为3.25~6.90米,东、南、北三面均为道路,东侧为城后路,距基坑约15米,西侧为2~5层的住宅楼群,天然基础,与基坑最近距离约6米。
环境条件:
场地附近属残丘台地地貌单元,地表均已填土,地面较平
地质情况:
根据钻探揭示,场地内第四纪地层主要有坡积层和厚度较大的残积层,下部基岩为花岗岩类。场地内地下水为滞水类型,储存于粘性土层中,地下水以大气降水补给为主,勘察期间水位埋深为2.30~3.10米。
基坑西侧采用复合型加强土钉墙支护,其余各层比较空旷故采用放坡+土钉的支护方式。 该基坑安全等级为二级。
二、监测目的
在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起土体的变形,即使采取了支护措施,一定数量的变形总是难以避免的。这些变形包括:基坑坑内土体的隆起;基坑支护结构以及周围建筑物的变形。无论那种位移的量超出了某个容许的范围,都将对基坑支护结构和周围结构与道路造成危害。为了解施工期间基坑位移、沉降及周边建筑物变形的变化情况,保证基坑自身稳定和安全以及周围建筑物、地下管线的安全,同时给设计、施工部门提出准确的、可靠的、科学的数据,必须进行基坑围护结构沉降、基坑位移及周边建筑物沉降观测、基坑周边地下水位观测。
对基坑施工过程进行监测的目的如下: ⑴ 根据现场监测数据与设计值(或预测值)进行比较,如超过某个限值,就采取工程措施,防止支护结构破坏和环境事故的发生。保证支护结构和相邻道路、建筑物的安全; ⑵验证支护结构设计,指导基坑开挖和支护结构的信息化施工; ⑶总结工程经验,为完善设计分析提供依据。
三、编制依据
1、《建筑地基基础设计规范》GB 50007-20xx;中华人民共和国国家标准
2、《工程测量规范》GB50026-93;中华人民共和国国家标准
3、《精密工程测量规范》GB/T15314-94;
4、《建筑变形测量规程》JGJ/T8-97;中华人民共和国国家行业规程
5、《国家一、二等水准测量规范》GB12897-91
6、《岩土工程勘察规范》(GB50021-20xx)
7、山东省标准《建筑基坑支护工程技术规程》
8、《济宁市城后路金都楼基坑支护工程图纸》和《地质资料》
四、基坑监测内容和监测网布设
(一)监测内容
根据基坑支护设计方案及上述规范要求,本工程深基坑开挖监测内容包括:
① 基坑支护围护结构顶部水平位移及沉降观测; ② 基坑周围房屋的沉降观测; ③ 基坑周边地下水位观测; ④ 支护结构面开裂情况检查; ⑤基坑周围地面超载状况检查; ⑥基坑渗水、漏水状况检查;
主要采用工程测量及目测二种方法相结合,并对相关数据进行综合分析,避免数据异常时外界偶然因素的不利影响,从而提供精确真实可靠的科学数据 在基坑开挖前7天完成7个基准点的布设,基坑支护边线确定后马上布设观测点,并对位移、沉降监测网进行初始值的测读。
(二)位移观测点的布设
1、位移、沉降监测基准点的建立
根据现场实地踏勘的情况,考虑基准点的稳定性和观测精度要求,在工程现场旁距基坑边5倍开挖深度距离以外的稳定土体中布设7个基准点(测量控制点)进行互相校核,它们的编号为WJ1、WJ2、WJ3、WJ4、CJ1、CJ2、CJ3;4个位移基准点每个与每边成一直线布置的水平位移观测点构成位移监测网,4个位移基准点和3个沉降基准点布置在相对稳定且大于5倍基坑深的距基坑边的位置,但必须在建筑物所产生的压力影响范围以外。
2、基坑支护围护结构顶部水平位移、沉降观测点的布置 观测点埋设时应注意观测点与被观测对象的牢靠结合,使得观测点的变化能真正反映观测对象的变化特征。
西面靠2~5层的住宅楼群位置的水平位移观测点布设在搅拌桩顶部位置、沉降观测点布设在紧挨水平位移观测点附近的地面上(搅拌桩边上);其他位置的水平位移、沉降观测点设在基坑支护围护结构顶部边线部位,观测标志拟采用Ф16膨胀螺栓安装在基坑支护围护结构顶部上,顶端位置磨成半球状。根据现场平面尺寸及测量规范要求,本方案按设计要求布设9个水平位移、沉降观测点,它们的编号为BX1-BX9。(详见《基坑监测平面图》)
3、基坑周围房屋的沉降观测点的布设
按设计要求布设40个基坑周围房屋沉降观测点其布点,它们的编FW1-FW40。位置详见《基坑监测平面图》。
4、基坑周边地下水位观测孔的'布设
按设计要求在基坑东、南、西、西、北层各布设1个水位观测孔, 编号为SW1~SW42,采用油压XY-100型钻机成孔,孔深约11米,并下塑料套管及滤管成井以便观测。位置详见《基坑监测平面图》。
(三)现场目测
目测内容主要有:①基坑开挖后,基坑坑壁、坑底及周边地下水是否有较大的渗漏,突涌,积水 情况及下雨天气等影响。②观察支护结构的异常变化,如是否产生裂缝及裂缝的发展状况。③基坑周边地面超载情况。④每次监测时须巡回基坑周边检查支护结构是否有异常变化。
五、基坑监测仪器的选择和精度要求
(一)水平位移观测仪器的选择和精度要求
1、仪器选择:
本水平位移观测使用苏一光DT202C电子经纬仪,本仪器已按时检定,在有效期范围内使用。
2、精度要求:
电子经纬仪 综合精度 比例误差 纵向补偿精度 纵向补偿精度
测距检定结果 ±1.21mm 0.20mm/km 测角检定结果 2.00// 3.00//
(二)沉降观测仪器的选择和精度要求 1、仪器选择:
1、使用苏一光DSZ2+FS1精密水准仪及铟钢水准标尺进行沉降观测。仪器最小分辨率为0.1mm,仪器及标尺在检验有效期内使用,并在作业期间定期进行检查校正。 2、精度要求:
本基坑顶部沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下: 等级 仪器类型 视线长度 前后视距
累差 任一测站上前后距差 视线高度(下丝读数之差) 二等 DS0.5 <30m <1.0m <0.3m >0.3m
项目 等级 基、辅分划读数差 基、辅分划所测高差之差 检测间歇点高差之差 上下丝读数平均值与中丝读数之差
二等 0.4mm 0.6mm 1mm 3.0mm
基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)
(三)基坑周边地下水位观测
水位观测采用SW-01电子水位计,计数精确至0.5cm。
六、观测方法、频率和要求
(一)观测方法
1、位移观测方法
水平位移采用苏一光DT202C电子经纬仪进行测量:在靠近观测对象的工作基点上设站,采用小角度测量方法取得观测点的角度初值,并用测算工作基点到观测点的距离,测量变化后基准点到测量点的角度,通过计算,可以得到基坑水平位移的数值。 初始值的测量读取应进行2-3次的校核,以确保其准确性。
2、沉降观测方法
基坑支护围护结构顶部沉降观测、基坑周围房屋沉降观测根据埋设好的基准点,从BM施测一条闭合路线建立初始数据。
沉降观测使用苏一光DSZ2+FS1精密水准仪及铟钢水准标尺进行沉降观测。仪器最小分辨率为0.01mm,仪器及标尺在检验有效期内使用,并在作业期间定期进行检查校正。
3、基坑周边地下水位观测
在水位监测孔布设完成后,以BM1-BM3为基准,将所有水位孔的顶部过一遍水准,测量出所有水位孔的顶部的高程;并以此为基准测出水位高程,水位测量时用水位探头放入水位观测井,测量出水面距水位孔的顶部的高度,从而计算出水面高程。同理测出以后各次水面的高程,用上次高程减本次高程即得出水位的下降量。
4、现场目测
开挖期间,每天派人到现场观察巡视基坑及周边环境情况,发现问题,及时通报给监理、施工单位、业主,做到每天一巡查的要求,其他时间也要定期对基坑周边环境进行巡视工作。
(二)监测频率
基坑监测的频率要随土方开挖进度和基坑变化情况作调整,基坑监测点布设后开始读测原始值,且应不少于2次。当基坑开始挖土时,每1~3天测量一次,基坑开挖完成至回填期间,每5~7天观测一次。当基坑边坡位移出现突变量及遇到暴雨天气,应加密观测,观测结果务必全面、真实、整洁,并整理成册上交监理、施工单位、业主,以指导施工。
项目 符号 数目 监测目的 监测频率 基坑开挖 其他期间
基坑支护围护结构顶部水平位移、沉降 BX 9 基坑支护围护结构顶部水平位移、沉降 每1~3天一次 每5~7天一次
周边建筑物沉降观测 FW 40 监测基坑周边建筑物的沉降 每1~3天一次 每5~7天一次
基坑周边地下水位观测 SW 4 基坑周边地下水位 每1~3天一次 每5~7天一次
本基坑支护安全等级为二级,各监测项目安全、警戒、控制值见下表:
序号 监测项目 安全值 警戒值 控制值
1 支护围护结构顶部 基坑西侧 水平位移 16mm 20mm 30mm 沉降 10mm 16mm 30mm
其他侧 水平位移 30mm 40mm 50mm 沉降 20mm 30mm 40mm
2 周边建筑物沉降 8mm 10mm 15mm
变形速率预警值为(开挖支护过程中)连续每天变形速度大于5mm/天;(开挖至坑底后)连续每天变形速度大于2mm/天。
当水平位移、沉降达到安全值或12小时内位移超过5mm时,应及时通知设计人员,并同时报告业主和监理工程师。并加密观测,同时进行基坑周围巡回目测。对出现裂缝的位置灌注水泥浆,以便观察裂缝的发展情况。
七、监测人员组织
根据我院的实际情况,决定对该工程实行项目负责制。项目负责人代表本院全面履行合同并直接对项目负责,下设测量员、记录员、扶尺员资料员、检查员等,分别履行有关的工作,详细分工如下:
项目负责人:对项目进行全面负责,代表我院履行合同,督促检查各项工作。 测量员:负责每次观测前检查仪器及铟钢水准标尺进行检查校正,正确架设仪器及行走路线进行观测。
记录员:负责准确记录测量数据并及时进行数据处理,以校核观测的准确性。
资料员:负责及时整理观测资料,发现观测数据有异常情况马上通知测量员及检查员,并对事件及时作出处理。
检查员:负责对测量员、记录员、资料员的工作进行检查督促。 基坑监测管理人员名单
序号 姓名 测量上岗证 职称 电话
1 李辉彬 0007448 工程师 13827254325 2 刘帆 0007447 助理工程师 13265254367
八、应急预案
1、当变形累计值、变形速率等指标达到预警值时,将增加监测频率,必要时,增加监测点的布置。同时及时通知设计方、委托方、监理及施工方,配合采取措施,防止发生安全事故。 2、当观测点及基准点遭受到人为或者其他原因破坏时应及时恢复或者补加监测点、基准点的布置。
九、监测工作注意事项
作业人员必须严格按规范要求监测并进行自检,做到记录清晰、齐全,计算准确无误。检查员应及时对测量成果进行检查,发现问题及时处理。审核员负责报告的审核,把好质量的最后一道关,并在监测工作过程中注意以下事项:
1、采用相同的观测路线和观测方法;
2、观测时应选择同一晴朗天气时进行观测;
3、使用同一仪器和设备;
4、固定观测人员,减少人为误差;
5、每次观测前,对所使用的仪器和设备进行检验校正,并作出详细记录
6、应保证观测数据的真实性,并保留原始观测数据,以备查核;
7、按国家有关测量规范进行观测。
十、监测结果及信息反馈
1、施工监测过程中的信息反馈 每次观测完毕后现场先粗算,如果位移量发生比较大时马上向业主方或监理方口头通报观测成果,分析开挖施工时基坑的安全可靠性及对周边环境的影响程度,及时提出建议、报警和应急措施,为信息化施工提供依据。确定监测信息处理反馈程序为:
2、监测成果提交
每次观测完毕后,及时向建设方、监理方、施工方口头通报观测成果,并及时提交本次成果报告,整个监测数据及图表结果均由计算机处理后提出。观测工作全部结束后,编写观测报告,应提交以下资料:
(1)位移观测成果表,时间、位移量(T-S)曲线图;
(2)沉降观测成果表,时间、沉降量(T-S)曲线图
(3)地下水位观测成果表,时间、变形量(T-S)曲线图;
(4)基坑监测平面布置图;
(5)基坑监测分析报告。
(6)基坑开挖进度(T-S)曲线图;
设计方案 篇3
摘 要:本文根据H.323协议,分析了多点处理单元(MCU)的组成,包括多点控制器(MC)和多点处理器(MP)。并在详细的分析了音频多点处理器后,提出了只对满足条件的m个信道的音频进行音频混合的方案,有效的刻服了现在比较流行的平均调整权重算法的音频混合方案所产生的缺陷和不足,大大提高了系统对音频混合的效果。
关键词:H.323协议;音频混合;设计
近年来,由于网络技术的快速发展为IP网络实现多媒体通信提供了基础条件,IPTV、视频会议、多媒体远程教育等宽带网络应用成为热点。而视频会议在实用化方面取得了迅速的发展,功能也己由原先单纯的电视会议功能发展成远程教学系统、远程监控系统、远程医疗系统等多方面的综合业务。
1、多点控制单元(MCU)
H.323协议在逻辑上可以分为四个组成实体:终端(Terminal)、网关(Gateway)、网守(Gatekeeper)、多点控制单元(MCU)。
多点控制单元用于支持三个以上端点设备的会议。在H.323系统中,一个多点控制单元由一个多点控制器(MC)和几个多点处理器(MP)组成,但也可以不包含MP。多点控制器处理终端间的H.245控制信息,从而决定它对视频和音频通常的处理能力。在必要情况下,多点控制器还可以判断哪些视频流和音频流需要多播,以控制会议系统使用的资源。
视频会议中,在集体讨论和自由发言的情况下,可能会有多个与会者同时发言。为了使每个与会者能同时听到其他所有发言者的声音,采用了音频混合技术。音频混合单元从各个终端取得音频信号,经过混合编码后再发送到各终端。该技术的引入使得各终端在接收多个发言人的音频信号时,在带宽占用和信号处理方面,与接收单一发言人的'音频信号相比,不会增加任何额外负担。
为了实现音频信号混合功能,系统必须具备语音信号编解码和音频码流转换功能。H.323要求所有终端必须支持G.711语音标准,而对G.722,G.728,G.723.1和G.729标准则是可选择的。对于能够提供高速带宽环境的网络,为了保证语音的高质量,可以采用速率较高的编码方式,如G.711, G.722;对于远程接入系统,由于带宽昂贵,则可以采用码率较低的编码方式,如G.723.1。相应地,MCU必须支持以上各种语音编码标准。
音频混合单元要求输入的各路语音信息属于同一种编码,但实际应用中由于各个终端选用的编码器可能不同,因而发往MCU的音频码流也可能不同。为了解决这个矛盾,必须在混音之前先进行码流转换,将不同的码流转换成同一种编码,再送入音频混合处理单元。
2、音频混合方案设计
在实际应用中,如果与会人数只有两人,则只要保证通信是全双工的,就可以正常地进行会议,而无须进行混音。如果与会人数超过3人,则需要采用混音或者转发机制。
转发机制有两种策略:其一,将其他端点的数据都转发给一个端点;其二,按照约定的某种规则选出一路进行转发,也就是常见的“话筒传递”模式。这两种模式虽然可以满足一定层面的需求,但都存在明显的缺陷。前者会增加网络的传输负担和端点的处理负担,后者在多人会议的讨论中有明显的反应慢效果差的缺陷。如果与会者希望能够进行比较频繁的切换发言或者讨论,则会出现明显的断续和切换失效等情况。
而实时混音则能很好地解决这些问题。实际应用中,一般的混音方案都会采用时域叠加作为基本的处理手段。但是根据前面的分析可知,由于数字音频信号存在量化上限和下限的问题,则因叠加运算肯定会造成结果溢出。通常的处理手段是进行溢出检测,然后再进行饱和运算,即超过上限的结果被置为上限值,超过下限的值置为下限值。这种运算本身破坏了语音信号原有的时域特征,从而引入了噪声。这就是在某些系统中会出现爆破声和语音不连续现象的原因。同时,随着参与混音的人数增加,出现溢出的频率也不断上升,所以这类方法存在一个上限,而且这个上限值很低,实验证明,一般在4个终端参与混音时其结果就有很多噪音和断续,无法分辨语流了。
3、音频混合方案的改进设计
直接将各路音频流算术相加得到音频混合信号,其优点是简单且易于实现。经测试,在输入语音流少于4路时,能清晰地分辨各路语音信号。但系统仍存在问题。
在前述方法的基础上稍作改进可得到另一类混音设计方法,即将各路音频码流解码后,先对解码语音信号作一定程度的衰减,再进行算术相加。一般是在各路语音上乘以一个衰减因子1/n,其中n为进入混音器的语音流数目。这种方法能绝对保证相加后的语音信号不会溢出,而且对原算法的修改极少,极易实现。但是它存在的关键问题是,当进入混音器的语音流数较多时,各路语音信号的衰减程度都比较大,混音的结果是所有信号都比较弱,无法突出重点,严重时可能所有声音都听不清楚。
实现这一改进策略时,仍然是在每个语音通道上绑定一个解码器,负责该路语音的解码,但无需再绑定编码器。系统中最多同时存在m+l个编码器,其中m个分配给m路被选中的语音通道,另一个分配给音频混合信号S,对S编码后的码流发送到所有未被选中的终端和广播终端。由于解码器的运算复杂度远小于编码器,因此系统的计算负荷大大降低。改进后的混音器只选取音量最大的m路进行混音,其余信号被衰减,合理选择m的值,不仅使会议发言重点得以突出,与会者能获得最重要的发言信息,而且一般情况下都不会发生溢出情况。这一改进措施同时解决了前述两种方法所存在的问题和缺陷。
某个编码器在由一个语音通道转而分配给另一个语音通道时,必须先进行初始化(G.711a/u除外)。必须注意,要尽量减少编码器和语音通道之间对应关系的改变。
4、结束
本文在研究了H.323协议的基础上,研究了MCU的音频混合模型,并详细阐述了音频混合方案,为了过滤混合时的嘈音和增加临场感,提出了音频混合方案的改进方案。
【设计方案】相关文章:
设计方案(精选)09-26
经典设计方案12-05
设计方案07-21
(精选)设计方案11-04
[热门]设计方案07-28
设计方案(必备)07-31
(实用)设计方案07-29
设计方案(优秀)08-01
【推荐】设计方案08-19
[精华]设计方案09-22