数学高考学习计划

时间:2022-11-02 10:38:34 高考数学 我要投稿

数学高考学习计划3篇

  时光飞逝,时间在慢慢推演,前方等待着我们的是新的机遇和挑战,写好计划才不会让我们努力的时候迷失方向哦。什么样的计划才是有效的呢?下面是小编为大家整理的数学高考学习计划3篇,欢迎阅读,希望大家能够喜欢。

数学高考学习计划3篇

数学高考学习计划 篇1

  一、指导思想

  高三第一、二轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一、二轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。第三轮复习的首要任务就是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第三轮复习承上启下,就是促进知识灵活运用的关键时期,就是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。

  强化高中数学主干知识的复习,形成良好知识网络。整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。

  第三轮复习承上启下,就是知识系统化、条理化,促进灵活运用的关键时期,就是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“三轮看水平”之说.

  “三轮看水平”概括了第二轮复习的'思路,目标和要求.具体地说,一就是要看教师对《考试大纲》的理解就是否深透,研究就是否深入,把握就是否到位,明确“考什么”、“怎么考”.二就是看教师讲解、学生练习就是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三就是看知识讲解、练习检测等内容科学性、针对性就是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四就是看练习检测与高考就是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.

  二、时间安排:

  1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。

  2.第二阶段就是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。

  3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。

  三、怎样上好第三轮复习课的几点建议:

  (一).明确“主体”,突出重点。

  第三轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究20xx-2010湖南对口高考试题.

  第三轮复习的形式和内容

  1.形式及内容:分专题的形式,具体而言有以下八个专题。

  (1)集合、函数与导数。此专题函数和导数、应用导数知识解决函数问题就是重点,特别要注重交汇问题的训练。

  (2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换就是重点。

  (3)数列。此专题中数列就是重点,同时也要注意数列与其他知识交汇问题的训练。

  (4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题就是重点。

  (5)解析几何。此专题中解析几何就是重点,以基本性质、基本运算为目标。突出直线和圆锥曲线的交点、弦长、轨迹等。

  (6)不等式、推理与证明。此专题中不等式就是重点,注重不等式与其他知识的整合。

  (7)排列与组合,二项式定理,概率与统计、复数。此专题中概率统计就是重点,以摸球问题为背景理解概率问题。

  (9)高考数学思想方法专题。此专题中函数与方程、数形结合、化归与转化、分类讨论思想方法就是重点。

  (二)、做到四个转变。

  1.变介绍方法为选择方法,突出解法的发现和运用.

  2.变全面覆盖为重点讲练,突出高考“热点”问题.

  3.变以量为主为以质取胜,突出讲练落实.

  4.变以“补弱”为主为“扬长补弱”并举,突出因材施教

  5.做好六个“重在”。重在解题思想的分析,即在复习中要及时将四种常见的数学思想渗透到解题中去;重在知识要点的梳理,即第三轮复习不像第一、二轮复习,没有必要将每一个知识点都讲到,但就是要将重要的知识点用较多的时间重点讲评,及时梳理;重在解题方法的总结,即在讲评试题中关联的解题方法要给学生归类、总结,以达触类旁通的效果;重在学科特点的提炼,数学以概念性强,充满思辨性,量化突出,解法多样,应用广泛为特点,在复习中要展现提炼这些特点;重在规范解法的示范,有些学生在平时的解题那怕就是考试中很少注意书写规范,而高考就是分步给分,书写不规范,逻辑不连贯会让学生把本应该得的分丢了,因此教师在复习中有必要作一些示范性的解答。

  (三)、克服六种偏向。

  1.克服难题过多,起点过高.复习集中几个难点,讲练耗时过多,不但基础没夯实,而且能力也上不去.

  2.克服速度过快.内容多,时间短,未做先讲或讲而不做,一知半解,题目虽熟悉,却仍不会做.

  3.克服只练不讲.教师不选范例,不指导,忙于选题复印.

  4.克服照抄照搬.对外来资料、试题,不加选择,整套搬用,题目重复,针对性不强.

  5.克服集体力量不够.备课组不调查学情,不研究学生,对某些影响教与学的现象抓不住或抓不准,教师“头头就是道,夸夸其谈”,学生“心烦意乱”.不研究高考,复习方向出现了偏差.

  6.克服高原现象.第三轮复习“大考”、“小考”不断,次数过多,难度偏大,成绩不理想;形成了心理障碍;或量大题不难,学生忙于应付,被动做题,兴趣下降,思维呆滞.

  7.试卷讲评随意,对答案式的讲评。对答案式的讲评就是影响讲评课效益的大敌。评讲的较好做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、失分点、模糊点,剖析根源,彻底矫正。

  四、在第三轮复习过程中,我们安排如下:

  1.继续抓好集体备课。每周一次的集体备课必须抓落实,发挥集体智慧的力量研究数学高考的动向,学习与研究《考试大纲》,注意哪些内容降低要求,哪些内容成为新的高考热点,每周一次研究课。

  2.安排好复习内容。

  3.精选试题,命题审核。

  4.测试评讲,滚动训练。

  5.精讲精练:以中等题为主。

数学高考学习计划 篇2

  一、课后及时回忆

  如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

  可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲跟要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

  二、定期重复巩固

  即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的.学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识跟方法的整体把握。

  三、科学合理安排

  复习一般可以分为集中复习跟分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

  四、重点难点突破

  对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点跟易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。

  五、复习效果检测

  随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。

数学高考学习计划 篇3

  专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点

  函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

  一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

  不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

  专题二:数列。以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

  专题三:三角函数,平面向量,解三角形。三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的'一大难点解析几何整合。

  专题四:立体几何。立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

  另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

  专题五:解析几何。直线与圆锥曲线的位置关系,动点轨迹的探讨,求定值,定点,最值这些为近年来考的热点问题。解析几何是考生所公认的难点,它的难点不是对题目无思路,不是不知道如何化解所给已知条件,难点在于如何巧妙地破解已知条件,如何巧妙地将复杂的运算量进行化简。当然这里边包含了一些常用方法,常用技巧,需要学生去记忆,体会。

  专题六:概率统计,算法,复数。算发与复数一般会出现在选择题中,难度较小,概率与统计问题着重考察学生的阅读能力和获取信息的能力,与实际生活关系密切,学生需学会能有效得提取信息,翻译信息。做到这一点时,题目也就不攻自破了。

  专题七:极坐标与参数方程,几何证明。这部分所考察的题目比较简单,主要出现在选择,填空题中,学生需要熟记公式。

【数学高考学习计划】相关文章:

高考数学寒假学习计划12-05

高考数学学习计划11-08

寒假高考数学的学习计划12-09

高考数学复习学习计划范文12-07

高考数学学习计划(7篇)11-15

高考数学学习计划7篇11-09

高考数学学习计划集锦7篇11-16

高考数学学习技巧12-09

高考数学学习方案12-09

高考数学学习经验分享12-09